martes, 29 de septiembre de 2015

Peso específico

De Wikipedia, la enciclopedia libre
Saltar a: navegación, búsqueda
Se le llama peso específico a la relación entre el peso de una sustancia y su volumen.
Su expresión de cálculo es:
\gamma = \frac {P}{V} = \frac {m g}{V}= \rho\ g
siendo,
\gamma\,, el peso específico;
P\,, el peso de la sustancia;
V\,, el volumen de la sustancia;
\rho\,, la densidad de la sustancia;
m\,, la masa de la sustancia;
g\,, la aceleración de la gravedad.

Unidades

Como el kilogramo–fuerza representa el peso de un kilogramo —en la Tierra—, el valor numérico de esta magnitud, expresada en kgf/m3, es el mismo que el de la densidad, expresada en kg/m3.
Por ende, está íntimamente ligado al concepto de densidad, que es de uso fácil en unidades terrestres, aunque confuso según el SI. Como consecuencia de ello, su uso está muy limitado. Incluso, en física resulta incorrecto.[cita requerida]

Empuje

   
El empuje es una fuerza de reacción descrita cuantitativamente por la tercera ley de Newton. Cuando un sistema expele o acelera masa en una dirección (acción), la masa acelerada causará una fuerza igual en dirección contraria (reacción). Matemáticamente esto significa que la fuerza total experimentada por un sistema se acelera con una masa m que es igual y opuesto a m veces la aceleración a, experimentada por la masa:
\sum^{}_{} \vec F = m \vec a

Ejemplos

Fuerzas sobre un perfil alar.
Un avión genera empuje hacia adelante cuando la hélice que gira, empuja el aire o expulsa los gases expansivos del reactor, hacia atrás del avión. El empuje hacia adelante es proporcional a la masa del aire multiplicada por la velocidad media del flujo de aire.
Similarmente, un barco genera empuje hacia adelante (o hacia atrás) cuando la hélice empuja agua hacia atrás (o hacia adelante). El empuje resultante empuja al barco en dirección contraria a la suma del cambio de momento del agua que fluye a través de la hélice.

 

Densidad

   
Un cilindro graduado que contiene varios líquidos de colores con diferentes densidades.
En física y química, la densidad (del latín densĭtas, -ātis) es una magnitud escalar referida a la cantidad de masa en un determinado volumen de una sustancia. Usualmente se simboliza mediante la letra rho ρ del alfabeto griego. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.
\rho = \frac{m}{V}\,
Si un cuerpo no tiene una distribución uniforme de la masa en todos sus puntos la densidad alrededor de un punto puede diferir de la densidad media. Si se considera una sucesión pequeños volúmenes decrecientes \Delta V_k (convergiendo hacia un volumen muy pequeño) y estén centrados alrededor de un punto, siendo \Delta m_k la masa contenida en cada uno de los volúmenes anteriores, la densidad en el punto común a todos esos volúmenes:
\rho(x) = \lim_{k \to \infty} \frac{\Delta m_k}{\Delta V_k} \approx \frac{dm}{dV}
La unidad es kg/ en el SI.
Como ejemplo, un objeto de plomo es más denso que otro de corcho, con independencia del tamaño y masa.

Prensa hidráulica

    
La prensa hidráulica es un mecanismo conformado por vasos comunicantes impulsados por pistones de diferentes áreas que, mediante una pequeña fuerza sobre el pistón de menor área, permite obtener una fuerza mayor en el pistón de mayor área. Los pistones son llamados pistones de agua, ya que son hidráulicos. Estos hacen funcionar conjuntamente a las prensas hidráulicas por medio de motores.
Antigua prensa hidráulica.
En el siglo XVII, en Francia, el matemático y filósofo Blaise Pascal comenzó una investigación referente al principio mediante el cual la presión aplicada a un líquido contenido en un recipiente se transmite con la misma intensidad en todas direcciones.[1] Gracias a este principio se pueden obtener fuerzas muy grandes utilizando otras relativamente pequeñas. Uno de los aparatos más comunes para alcanzar lo anteriormente mencionado es la prensa hidráulica, la cual está basada en el principio de Pascal.
El rendimiento de la prensa hidráulica guarda similitudes con el de la palanca, pues se obtienen fuerzas mayores que las ejercidas pero se aminora la velocidad y la longitud de desplazamiento, en similar proporción.
 

Cálculo de la relación de fuerzas

Cuando se aplica una fuerza F_1 \, sobre el émbolo de menor área A_1 \, se genera una presión p_1 \,:
Esquema de fuerzas y áreas de una prensa hidráulica.

p_1=\frac{F_1}{A_1} \,
Del mismo modo en el segundo émbolo:
p_2=\frac{F_2}{A_2} \,
Se observa que el líquido está comunicado, luego por el principio de Pascal, la presión en los dos pistones es la misma. Por tanto se cumple que:
 p_1=p_2 \,
Esto es:
\frac{F_1}{A_1}=\frac{F_2}{A_2} \, y la relación de fuerzas: \frac{F_1}{F_2}=\frac{A_1}{A_2} \,
Luego, la fuerza resultante de la prensa hidráulica es:
F_2=F_1\frac{A_2}{A_1}
Donde:
F_1 \, = fuerza del émbolo menor en N.
F_2 \, = fuerza del émbolo mayor en N.
A_1 \, = área del émbolo menor en .
A_2 \, = área del émbolo mayor en m².

Presion Hidrostatica

Es la presión que ejerce un líquido en reposo, sobre un cuerpo sumergido dentro de él. Esta presión se origina debido al peso del líquido que actúa sobre el área o superficie del cuerpo. Para deducir una fórmula que permita evaluar la presión de un líquido (PL) sobre un cuerpo sumergido, a una distancia h del nivel superior (altura del fluido), analicemos la siguiente figura:
presion hidrostatica
Como un artificio, hemos construido un pequeño cilindro de altura “h” y área “S”:
formula presion hidrostatica
Con lo cual se obtiene:   PL = ϒL x h
La fórmula deducida nos indica que la presión de un líquido no depende de la forma del recipiente que lo contiene, sólo depende de la profundidad o altura del líquido y la naturaleza de éste.
Ejercicio Aplicativo:
Hallar la presión ejercida por una columna de agua en el fondo de un recipiente que, al estar inclinado un ángulo de 30° respecto a la horizontal, posee una longitud de 90cm.
Solución:
problema presion hidrostatica
Para evaluar la presión hidrostática se considera la altura “h” que es igual a:
h = 90 cm x Sen 30°
h = 45 cm
Sabemos que el peso especifico del agua (ϒ) es: 1 g-f/cm3
Entonces la presión es:
P = ϒ(H2O) x h = 1 g-f/cm3 x 45 cm
P = 45 g-f/cm2
También se puede expresar el resultado en unidades del sistema internacional (S.I.) teniendo en cuenta la siguiente equivalencia.
1 g-f/cm2 = 98 Pa
Entonces la presión será:
P = (45 x 98) Pa
P = 4410 Pa = 4410 N/m2
 

Presión

 
Distribución de presiones sobre un cilindro que se mueve a velocidad constante en el seno de un fluido ideal.
Esquema; se representa cada "elemento" con una fuerza dP y un área dS.
Animación: efecto de la presión en el volumen de un gas.
 
La presión (símbolo p) es una magnitud física que mide la proyección de la fuerza en dirección perpendicular por unidad de superficie, y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una línea. En el Sistema Internacional de Unidades la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de un newton (N) actuando uniformemente en un metro cuadrado (m²). En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.

Hidrostática

La hidrostática es la rama de la mecánica de fluidos o de la hidráulica que estudia los fluidos incompresibles en estado de equilibrio; es decir, sin que existan fuerzas que alteren su movimiento o posición, en contraposición a la dinámica de fluidos.

Características de los fluidos

Se denomina fluido a aquél medio continuo formado por alguna sustancia entre cuyas moléculas sólo hay una fuerza de atracción débil. La propiedad definitoria es que los fluidos pueden cambiar de forma sin que aparezcan en su seno fuerzas restitutivas tendentes a recuperar la forma "original" (lo cual constituye la principal diferencia con un sólido deformable, donde sí hay fuerzas restitutivas).
Los estados de la materia líquido, gaseoso y plasma son fluidos, además de algunos sólidos que presentan características propias de éstos, un fenómeno conocido como solifluxión y que lo presentan, entre otros, los glaciares y el magma.
Las caracteristicas principales que presenta todo fluido son:
  • Cohesión. Fuerza que mantiene unidas a las moléculas de una misma sustancia.
  • Tensión superficial. Fenómeno que se presenta debido a la atracción entre las moléculas de la superfíciede un líquido.
  • Adherencia. Fuerza de atracción que se manifiesta entre las moléculas de dos sustancias diferentes en contacto.
  • Capilaridad. Se presenta cuando existe contacto entre un líquido y una pared sólida, debido al fenómeno de adherencia. En caso de ser la pared un recipiente o tubo muy delgado (denominados "capilar

    Presión de un fluido en equilibrio

    En términos de mecánica clásica, la presión de un fluido incompresible en estado de equilibrio se puede expresar mediante la siguiente fórmula:
    \delta P = \rho g h
    Donde P es la presión, ρ es la densidad del fluido, g es la aceleración de la gravedad y h es la alturaes") este fenómeno se puede apreciar con mucha claridad.

Elasticidad

El término ‘elasticidad’ se utiliza para hacer referencia a aquella capacidad de la física que permite que algunos elementos cambien su forma de acuerdo a si están bajo estrés físico (es decir, estiramiento) o a si están en su posición de reposo. Algunos materiales tienen la propiedad de ser particularmente elásticos y por tanto son utilizados para la elaboración de productos en los cuales esta propiedad es útil (por ejemplo, algunos tejidos que deben adaptarse a la forma del cuerpo de una persona).
 
La elasticidad es una propiedad que se aplica a varios elementos tanto naturales como artificiales (es decir, creados por el hombre). Esta propiedad significa que el elemento en sí tiene una forma, un tamaño y un determinado tipo de rasgos en estado de reposo que varían al ser estirados o puestos bajo tensión. Un ejemplo claro de elasticidad es, como se ve en la imagen, una bandita elástica que está hecha de goma (un material ciertamente elástico). Mientras que en reposo posee una forma y un tamaño específico, bajo tensión la misma se puede agrandar, torcer, arrugar, etc.
  

Estado de agregación de la materia



Estado de agregación de la materia



Este diagrama muestra la nomenclatura para las diferentes transiciones de fase su reversibilidad y relación con la variación de la entalpía.

En física y química se observa que, para cualquier sustancia o mezcla, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.

Todos los estados de agregación poseen propiedades y características diferentes; los más conocidos y observables cotidianamente son cuatro, llamados fases sólida, líquida, gaseosa y plasmática. También son posibles otros estados que no se producen de forma natural en nuestro entorno, por ejemplo: condensado de Bose-Einstein, condensado fermiónico y estrellas de neutrones. Se cree que también son posibles otros, como el plasma de quark-gluón.[1]

Estado sólido

Los objetos en estado sólido se presentan como cuerpos de forma definida; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. En los sólidos cristalinos, la presencia de espacios intermoleculares pequeños da paso a la intervención de las fuerzas de enlace, que ubican a las celdillas en formas geométricas. En los amorfos o vítreos, por el contrario, las partículas que los constituyen carecen de una estructura ordenada.

Las sustancias en estado sólido suelen presentar algunas de las siguientes características:

  • Cohesión elevada;
  • Tienen una forma definida y memoria de forma, presentando fuerzas elásticas restitutivas si se deforman fuera de su configuración original;
  • A efectos prácticos son incompresibles,
  • Resistencia a la fragmentación;
  • Fluidez muy baja o nula;
  • Algunos de ellos se subliman.


Estado líquido

Si se incrementa la temperatura de un sólido, este va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:

  • Cohesión menor.
  • Movimiento energía cinética.
  • Son fluidos, no poseen forma definida, ni memoria de forma por lo que toman la forma de la superficie o el recipiente que lo contiene.
  • En el frío se contrae (exceptuando el agua).
  • Posee fluidez a través de pequeños orificios.
  • Puede presentar difusión.
  • Son poco compresibles.

Estado gaseoso

Se denomina gas al estado de agregación de la materia que no tiene forma ni volumen definido. Su principal composición son moléculas no unidas, expandidas y con poca fuerza de atracción, haciendo que no tengan volumen y forma definida, provocando que este se expanda para ocupar todo el volumen del recipiente que la contiene, con respecto a los gases las fuerzas gravitatorias y de atracción entre partículas resultan insignificantes. Es considerado en algunos diccionarios como sinónimo de vapor, aunque no hay que confundir sus conceptos, ya que el término de vapor se refiere estrictamente para aquel gas que se puede condensar por presurización a temperatura constante. Los gases se expanden libremente hasta llenar el recipiente que los contiene, y su densidad es mucho menor que la de los líquidos y sólidos.

Dependiendo de sus contenidos de energía o de las fuerzas que actúan, la materia puede estar en un estado o en otro diferente: se ha hablado durante la historia, de un gas ideal o de un sólido cristalino perfecto, pero ambos son modelos límites ideales y, por tanto, no tienen existencia real.

En los gases reales no existe un desorden total y absoluto, aunque sí un desorden más o menos grande.

En un gas, las moléculas están en estado de caos y muestran poca respuesta a la gravedad. Se mueven tan rápidamente que se liberan unas de otras. Ocupan entonces un volumen mucho mayor que en los otros estados porque dejan espacios libres intermedios y están enormemente separadas unas de otras. Por eso es tan fácil comprimir un gas, lo que significa, en este caso, disminuir la distancia entre moléculas. El gas carece de forma y de volumen, porque se comprende que donde tenga espacio libre allí irán sus moléculas errantes y el gas se expandirá hasta llenar por completo cualquier recipiente.

El estado gaseoso presenta las siguientes características:

  • Cohesión casi nula.
  • No tienen forma definida.
  • Su volumen es variable.

Estado plasmático

El plasma es un gas ionizado, es decir que los átomos que lo componen se han separado de algunos de sus electrones. De esta forma el plasma es un estado parecido al gas pero compuesto por aniones y cationes (iones con carga negativa y positiva, respectivamente), separados entre sí y libres, por eso es un excelente conductor. Un ejemplo muy claro es el Sol.

En la baja Atmósfera terrestre, cualquier átomo que pierde un electrón (cuando es alcanzado por una partícula cósmica rápida) se dice que está ionizado. Pero a altas temperaturas es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos, (ley de los gases ideales) y a muy altas temperaturas las colisiones entre estos átomos, moviéndose muy rápido, son suficientemente violentas para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente «ionizados» por estas colisiones y el gas se comporta como un plasma.

A diferencia de los gases fríos (por ejemplo, el aire a temperatura ambiente), los plasmas conducen la electricidad y son fuertemente influidos por los campos magnéticos. La lámpara fluorescente, contiene plasma (su componente principal es vapor de mercurio) que calienta y agita la electricidad, mediante la línea de fuerza a la que está conectada la lámpara. La línea, positivo eléctricamente un extremo y negativo, causa que los iones positivos se aceleren hacia el extremo negativo, y que los electrones negativos vayan hacia el extremo positivo. Las partículas aceleradas ganan energía, colisionan con los átomos, expulsan electrones adicionales y mantienen el plasma, aunque se recombinen partículas. Las colisiones también hacen que los átomos emitan luz y esta forma de luz es más eficiente que las lámparas tradicionales. Los letreros de neón y las luces urbanas funcionan por un principio similar y también se usaron en electrónicas.

Cambios de estado



Diagrama de los cambios de estado entre los estados sólido, líquido y gaseoso.

Para cada elemento o compuesto químico existen determinadas condiciones de presión y temperatura a las que se producen los cambios de estado, debiendo interpretarse, cuando se hace referencia únicamente a la temperatura de cambio de estado, que ésta se refiere a la presión de la atm. (la presión atmosférica). De este modo, en "condiciones normales" (presión atmosférica, 0 °C) hay compuestos tanto en estado sólido como líquido y gaseoso (S, L y G).

Los procesos en los que una sustancia cambia de estado son: la sublimación (S-G), la vaporización (L-G), la condensación (G-L), la solidificación (L-S), la fusión (S-L), y la sublimación inversa (G-S). Es importante aclarar que estos cambios de estado tienen varios nombres.